Recycling Krylov Subspaces for Sequences of Linear Systems

نویسندگان

  • Michael L. Parks
  • Eric de Sturler
  • Greg Mackey
  • Duane D. Johnson
  • Spandan Maiti
چکیده

Many problems in engineering and physics require the solution of a large sequence of linear systems. We can reduce the cost of solving subsequent systems in the sequence by recycling information from previous systems. We consider two di erent approaches. For several model problems, we demonstrate that we can reduce the iteration count required to solve a linear system by a factor of two. We consider both Hermitian and non-Hermitian problems, and present numerical experiments to illustrate the e ects of subspace recycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recycling Krylov Subspaces for Solving Linear Systems with Successively Changing Right-Hand Sides Arising in Model Reduction

We discuss the numerical solution of successive linear systems of equations Ax = bi, i = 1,2, . . .m, by iterative methods based on recycling Krylov subspaces. We propose various recycling algorithms which are based on the generalized conjugate residual (GCR) method. The recycling algorithms reuse the descent vectors computed while solving the previous linear systems Ax = b j, j = 1,2, . . . , ...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Recycling BiCG with an Application to Model Reduction

Science and engineering problems frequently require solving a sequence of dual linear systems. Besides having to store only few Lanczos vectors, using the BiConjugate Gradient method (BiCG) to solve dual linear systems has advantages for specific applications. For example, using BiCG to solve the dual linear systems arising in interpolatory model reduction provides a backward error formulation ...

متن کامل

Model Reduction for Time-Varying Descriptor Systems Using Krylov-Subspaces Projection Techniques

We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace....

متن کامل

Projection-Based Model Reduction for Time-Varying Descriptor Systems Using Recycled Krylov Subspaces

We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006